欢迎您光临小九直播体育直播平台官方网站!
小九直播体育直播平台 WUXI HUIHONG ELECTRONICS CO.,LTD
全国免费资询热线: 0510-8531178780018002
小九直播体育直播平台

南方科技大学葛锜西安交通大学原超团队《Nature Communications》:陶瓷4D打印研

发布时间:2024-10-12 16:51:23   来源:小九直播体育直播平台

  4D打印是一种基于3D打印发展的新型制造技术。相比3D打印,4D打印将智能材料和力学设计融入制作的完整过程。因此在外界环境刺激(如光、热、电、磁等)下,4D打印结构可随时间产生形状或功能的改变,在生物医疗、航空航天等领域有着广阔的应用前景。目前,实现4D打印的材料主要局限于水凝胶、形状记忆聚合物和液晶弹性体等智能软材料,而对于陶瓷类材料的4D打印仍存在诸多技术瓶颈。现有的陶瓷4D打印主要是基于墨水直写工艺,且需模具实现结构预编程,效率和精度有待提升。数字光处理(DLP)技术是一种通过紫外光面投影成型的高精度3D打印技术,但将该技术用于陶瓷4D打印仍面临以下几个挑战:(i)缺乏具有大变形能力的光固化陶瓷弹性体树脂;(ii)缺乏与陶瓷弹性体树脂匹配的光固化驱动材料;(iii)缺乏可以一体化成型陶瓷弹性体-驱动材料的多材料3D打印技术和装备。

  2024年1月26日,南方科技大学机械与能源工程系葛锜教授与西安交通大学原超副教授研究团队提出了一种简单高效的陶瓷4D打印制造方法和设计策略。采用团队自主开发的多材料光固化3D打印设备制造水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动层合结构由平面图案演化为复杂三维结构,在无需额外形状编程的条件下实现陶瓷结构的直接4D打印。该研究成果以“Direct 4D printing of ceramics driven by hydrogel dehydration”为题,发表在《Nature Communications》期刊上。南方科技大学机械与能源工程系研究助理教授王荣、西安交通大学副教授原超和南方科技大学博士研究生程健翔为论文共同第一作者。西安交通大学原超副教授和南方科技大学葛锜教授为论文共同通讯作者。南方科技大学为论文第一单位。

  图1展示了陶瓷4D打印的基本流程。采用南科大葛锜教授课题组自主研发的多材料光固化3D打印设备一体化成型界面牢固的水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动平面图案演化为复杂三维结构,进而利用高温脱脂和烧结得到纯陶瓷三维结构。

  图2展示了研究团队为陶瓷4D打印开发出的低粘度光敏陶瓷弹性体浆料和丙烯酸水凝胶前驱体。固化成型的陶瓷弹性体生坯具有大变形能力,可承受高达700%的拉伸应变,其力学性能可通过改变浆料中交联剂含量来调控。水凝胶作为驱动材料,在失水过程中可实现高达65%的体积收缩率和40倍以上的模量提升,在变形失配诱导下带动层合结构产生整体弯曲变形,其更重要的是,光固化陶瓷弹性体-水凝胶层合结构界面韧性好,保证其在变形过程中不可能会发生界面剥离。

  如图3所示,在烧结过程中,弯曲的层合结构发生了曲率回撤现象。通过实验研究和有限元模拟,研究团队将现象归因于烧结过程中层合结构厚度方向的不均匀收缩。考虑水凝胶失水过程中层合结构变形以及烧结过程中陶瓷结构曲率回撤现象,研究团队建立了基于相转变的本构模型描述水凝胶脱水的刚度增加和体积收缩,进而结合层合梁理论预测陶瓷弹性体-水凝胶层合结构的脱水弯曲过程,最后将陶瓷烧结过程中变形梯度引发的非均匀收缩引入理论模型,计算最终的结构弯曲变形,理论预测与实验结果取得了很好的一致性。利用理论模型绘制的设计机制图可以定量呈现结构变形与结构参数的映射关系,为水凝胶-陶瓷层合结构设计提供了有效指导。

  图4展示了陶瓷4D打印的逆向设计流程:1)通过三维建模提取目标构型特征参数;2)设计平面图案确定待定设计参数;3)理论模型计算待定设计参数;4)有限元模拟预测三维形状;5)多材料打印实现层合结构到目标三维形状的构型转换。以正四面体为例,具体展示了陶瓷4D打印的设计流程,实验结果与最初的设计目标一致。

  如图5所示,通过对平面层合结构可以进行多样化图案设计,可实现如立方体盒子、Miura折纸结构、鹤、三叶风扇和蝎子等各种三维陶瓷结构。与模具辅助变形和手动折叠等方法相比,基于水凝胶失水驱动的陶瓷直接4D打印技术能够更简单、更高效、更精准地制造各三维陶瓷结构,为复杂陶瓷结构的设计和制造开辟了新的途径。

  基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具备极其重大应用潜力。

  离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内就可以完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。

  可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不一样的行业和应用领域,提供了材料选择的灵活性。

  多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。

  Microchek MICA Advance 行业微生物快速分析解决方案:嗜肺军团菌检测

  轻松维护,高效运行:SCIEX 7500+ QTRAP和Echo MS+赋能精准分析

  上海中医药大学创新中药研究院|岛津企业管理(中国)有限公司合作实验室揭牌仪式成功举办

  HPLC 2024大连 沃特世与您相约第53届高效液相分离及有关技术国际研讨会

  哈尔滨工业大学《CEJ》:具有高气液分离效率的仿生Janus微流体制氢仿生功能器件

  【会议通知】关于召开精密生物3D打印与前沿应用研讨会会议通知(第一轮)

  浙大谢涛/浙理工彭文俊《Science Advances》:双网络聚合顺序调控可3D打印液晶弹性体的

  中南大学陈泽宇教授课题组《COLLOID SURFACE B》:用于原位形成纯化脂质体的透析功能化微

  丹纳赫(Danaher)四十周年创新再出发:10月11日谈高校创新转化,云参观苏州超级工厂

  征无界 · 勇创新microArch® Dual Series全球首发预告,亮点抢先看!

  摩友说微纳3D打印技术助力半导体领域核心技术攻关,加快构建高端芯片产业链

  南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器

  港理工/港大/港城大《Nature Communications》:亚微米精度单光子3D打印熔融石英

  大咖云集!摩方牵头“十四五”国家重点研发计划项目真正开始启动!实施方案论证会在京召开

  香港科技大学范智勇教授《Science Robotics》:基于半球形纳米线阵列的超宽视场针孔复眼

  西安交通大学:高渗透性、黏附和长时间耐用性的仿树蛙脚蹼的可穿戴柔性电极

Copyright©2018 小九直播体育直播平台 All rights reserve.专业生产介质陶瓷产品微波介质陶瓷天线的厂家

网站制作